
A Procedure for Measuring Latencies in Brain-Computer
Interfaces

J. Adam Wilson[Student Member, IEEE], Jürgen Mellinger, Gerwin Schalk[Member, IEEE],
and Justin Williams[Member, IEEE]

Abstract
Brain-computer interface (BCI) systems must process neural signals with consistent timing in
order to support adequate system performance. Thus, it is important to have the capability to
determine whether a particular BCI configuration (i.e., hardware, software) provides adequate
timing performance for a particular experiment. This report presents a method of measuring and
quantifying different aspects of system timing in several typical BCI experiments across a range of
settings, and presents comprehensive measures of expected overall system latency for each
experimental configuration.

Index Terms
BCI; BCI2000; Brain-Computer Interface; Timing; Real-Time

I. Introduction
For decades, experiments in cognitive research have relied on computers for data collection
and subject interaction. These experiments often depend on accurate timing of events, e.g.,
to present stimuli or to measure a subject’s reaction time [1], [2]. However, the most
prevalent operating system on computers today, Microsoft Windows, is not ideally suited to
support accurate timing [3], [4], [5], [6]. Other operating systems, such as Linux or Mac OS
X, may provide more accurate control over system timing [5], but they often lack the
required software and drivers for amplification and acquisition systems. As a result, most
experiments in cognitive research currently rely on external hardware for precise event
timing that is independent of the operating system and computer configuration. A typical
configuration may consist of software that presents stimuli on a video monitor time-locked
to the refresh cycle of the screen. Timing of stimulus presentation, as well as other external
input such as key presses, could be encoded as digital signals that can be digitized along
with neural signals. While such technical approaches provide highly accurate timing, they
are complicated to set up and limited in the experimental complexity they can support. For
example, an experiment that uses a portable laptop system may be unable to interface with
the external timer, and therefore the stimulus timing could not be verified on this system.

The study of brain-computer interfaces (BCIs) [7] is an emerging area of research that
shares many principles with cognitive research. Similar to cognitive research, a subject is
presented with stimuli; and the subject’s brain signal responses to these stimuli are detected
using different sensor methods, such as electroencephalography (EEG) [8],
electrocorticography (ECoG) [9], [10], or single-neuron recordings [11]. However, an
additional requirement of BCIs is that the stimuli are continuously changing based on
measurements derived from current and previous neural signals, such that the user can learn
to control the output using only voluntarily modulated brain activity. Thus, a BCI system
must control or detect event timing, such as when the stimulus is updated and the user

NIH Public Access
Author Manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

Published in final edited form as:
IEEE Trans Biomed Eng. 2010 July ; 57(7): 1785–1797. doi:10.1109/TBME.2010.2047259.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

responds. Additionally, it must also ensure that the system is capable of performing online
signal processing and classification, so that task-related changes in the brain signal are
properly detected and results are submitted to the output device (e.g., a video screen or other
external device such as a robotic arm) with minimal delay. While such a system could in
principle be implemented using the technical approaches described above (i.e., hardware-
based timing/triggers, or real-time capable operating systems), its implementation would be
complex and hence time-consuming. Furthermore, it would usually also be very specific to
the particular characteristics of individual experiments. This is a problem, because the
current early stage of development in BCI research implies that many factors of BCI
systems, such as the utilized brain signals, signal processing algorithms, or feedback
modalities, need to be evaluated to optimize BCI performance [12].

Fortunately, the demands in timing precision in BCI research are typically somewhat more
relaxed compared to other experiments in cognitive research. For example, accurate
measurement of the amplitude of the murhythm, i.e., an oscillation around 8–12 Hz over
sensorimotor cortex that is modulated by movements, will not be substantially affected by
small delays (e.g., 10 ms) in either the amplitude measurement, stimulus presentation, or the
resulting feedback update. As an example for the more time-critical nature of traditional
psychophysiological experiments, amplitude measurements of auditory brainstem evoked
potentials (whose time course is very short) critically depend on a highly accurate
relationship between stimulus presentation and brain signals. In summary, the circumstances
and requirements of BCI research described above suggest that it is both desirable and
practical to design a software-based general-purpose BCI system that can be used to
implement a range of BCI designs [12], [13], [14], [15].

Any BCI system implements a closed-loop system that involves the user and an output
device. It is typically comprised of an amplification and digitization system that records
neural signals, a data acquisition system (i.e., a computer that acquires the neural signals
from the amplification and digitization system), a signal processing stage that extracts signal
features and translates them into output control signals, and the application output (such as a
display on a video monitor, sound through speakers, or other neuroprosthetic device). The
effectiveness of a BCI, and the ability of users to learn how to use it, depends on the ability
of the system to acquire and process signals, and to present stimuli, in real-time, and on
providing the user with consistent feedback with low latency and minimal jitter. Because
these timing characteristics necessarily vary with different hardware, processing demands,
and outputs, a process is required that comprehensively characterizes a particular BCI
implementation. However, no previous effort has described such a procedure.

In this paper, we describe a procedure to quantify BCI system latencies at each step in the
processing chain. This process allows determination of whether or not the timing
characteristics of a particular BCI implementation (i.e., hardware and software) can support
the requirements of a particular set of BCI experiments. The procedure is applicable to any
BCI system, and is demonstrated for the BCI2000 system [12] and a Matlab-based BCI
implementation. The analysis program and instructions for using any BCI system are
included with the BCI2000 distribution, which is freely available on www.bci2000.org.

II. Methods
The timeline of events in a typical online, closed-loop BCI experiment is shown in Fig. 1.
Neural data are acquired in sample blocks; the number of samples in a block is dependent on
the sampling rate, e.g., a 30 ms block of data sampled at 1000 Hz contains 30 samples per
channel. In Fig. 1, during the period from t−2 to t−1, the BCI system waits for the ADC
(analog to digital converter) buffer to fill with the required number of samples for block N.

Wilson et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

At t−1, the ADC buffer is filled with data, and the computer begins reading the data and
storing it in memory on the computer for processing. At the same time during the data
transfer, the ADC is already recording samples in the next block of data, block N +1. The
period from t−1 to t0 is the time required to transmit all of the data from the ADC to the
computer’s memory.

At t0, the BCI system begins processing data to extract relevant signal features and to
generate control signals based on the brain activity in block N. Processing continues until t1,
at which point the control signal is ready, and the output command is issued, e.g., to update
the monitor, present a sound, or control a device. However, due to latencies in the operating
system and the device itself, this stimulus will not be presented immediately. This results in
an output delay, which is defined as the time between t1 (i.e., the time the output command
is issued) and t2 (i.e., the time the output device actually implements this command). Once
the output command is issued in software at t1, the BCI immediately begins to wait for the
next block of data. Block N + 1 is ready at t3, and is read into the computer at t4 (i.e., for
block N + 1, t3 and t4 are equivalent to t−1 and t0 relative to block N). For the purposes of
this study, the term “real-time” is used somewhat loosely, indicating only that the BCI
system is able to process an entire block of data and update the output device before the next
sample block is ready for processing. However, the degree to which the BCI system can be
considered real-time is dependent on many factors, including the operating system,
computer hardware specifications, and output device hardware. Furthermore, even if the
mean overall processing and output time is less than the sample block size, large variability
in this timing can significantly affect BCI performance, and must therefore be accounted for.

In summary, each of the BCI processing stages described above has an associated latency,
which corresponds to the time required to complete a specific task. The duration of these
latencies will change depending on the computer hardware and the task configuration. The
latencies are defined further in the following section.

A. Latency Definitions
1) ADC Latency—The ADC latency is the delay between the time that the final sample in
a sample block is digitized to when the sample block has been acquired by the software and
is available to the software for processing. Depending on configuration, this latency may
comprise physical signal delay in the amplifier, digitization, transmission from the ADC to
the PC, and processing time inside a hardware driver. Because data are transmitted in blocks
of one or more of samples, that minimum delay occurs for the last sample of a data block,
which, unlike its preceding samples in the same block, will spend only a minimum time in
hardware and software buffers. Using the times defined in Fig. 1:

(1)

For ADCs connected via bandwidth-limited serial interfaces, transmission latency may have
a measurable impact on ADC latency. When using USB 2.0 or PCI card connections,
transmission latency may generally be neglected, as illustrated by the following example. If
we assume acquisition of 16 channels of 32-bit (4 byte) data and transmission of blocks of 8
samples, each block corresponds to 512 bytes of data. At USB 2.0 speed (i.e., a maximum
transmission rate of 60 MB/s), these data should take approximately 8.5 μs to transfer, which
is less than the duration of a single sample. However, if the configuration is changed to 64
channels of 100 ms duration sampled at 4800 Hz, equal to 122,880 bytes, this translates to a
transmission time of approximately 2 ms, assuming that transmission starts instantaneously
and without interruption. Because this is on the time scale of events during the BCI task, it
may be important to account for this latency.

Wilson et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2) Processing Latency—The processing latency is defined as the total time required for
the data to be processed, which generally includes extracting task-related information from
the neural signals, translating the features into control signals, and finally using these control
signals to send an update command to the application or device. From Fig. 1:

(2)

The processing latency depends on the algorithmic complexity and on CPU speed. For
example, the signal processing algorithm for a cursor movement task might calculate the
power spectral density for every block of data, whereas a processing algorithm that extracts
an evoked potential might average stimulus-triggered responses on one or more channels.
The computational complexity of these two different types of processing may be very
different. Thus, the requirements of experiment that is performed will likely dictate the
minimum system configuration possible. In either case, it is clear that the system must be
capable of processing data faster than the duration of the sample block. Otherwise, the
performance of the BCI system will degrade or fail.

3) Output Latency—The output latency is defined as the delay from the time that the
output command is issued to the time that the output device implements this command, i.e.,
the time from calling a software function to present a stimulus on a screen to the time that
the stimulus actually appears on the screen. Because it is possible to have any number of
output modalities, including video, sound, or mechanical, the output latency depends on the
specific modality. From Fig. 1:

(3)

The output latency can be determined by several contributing factors. For the most common
output, a video screen, these factors include the graphics card, the number of monitors used,
the resolution, the refresh rate, and even the type of monitor, i.e., cathode-ray tube (CRT) or
liquid crystal display (LCD).

4) System Latency and System Jitter—The system latency is defined as the minimum
time interval between a change in ADC input, and causally related change in the application
output. This is the time from t−1 to t2, and is calculated as the sum of the other three
latencies:

(4)

The system latency jitter is the standard deviation of the system latencies in a given test, and
provides a measure of the variability in overall system timing.

5) Block Duration and Block Jitter—The block duration is the time interval between
successive blocks of data that have been transmitted to the computer:

(5)

Ideally, the block duration should be identical to the sample block size; however,
inconsistencies in operating system timing may interrupt and delay data acquisition, causing
the time period between data blocks to be different than the actual block size, introducing a

Wilson et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

timing jitter. The block jitter is the standard deviation of Eq. (5) for all block durations in a
single test.

The block duration is the primary indicator of the system’s ability to perform online signal
processing in a BCI experiment. It is important to realize that the block duration is measured
from the perspective of the software, and is not the same as the block size. That is, the block
duration will never typically be less than the block size (i.e., the length of a block of data
acquired from the ADC), but it can be longer than the block size if the system latency is
longer than the block size. If the block duration is longer than the block size, this indicates
that the time required to process a block of data is longer than the block itself, i.e., the
system is still processing block N when block N +1 is ready to be transferred and processed.
In this case, the options are to modify the task configuration, use a more powerful system, or
optimize processing algorithms to increase performance.

These timing characteristics apply to any BCI system, i.e., all systems that record and
process neural data and generate a device command will have some latency between a
volitional change in the neural state and corresponding change in the device state, regardless
of the source of neural data (e.g., EEG, ECoG, or spikes) and the output device (e.g., a
robotic arm, computer cursor, or spelling application). Next, we will describe the
requirements for measuring these latencies in any BCI system.

B. Requirements for Measuring Latencies
Accurate measurement of system latencies requires methods for determining the precise
timing of the events in Fig. 1. This section describes a series of methods for measuring these
latencies without the use of an external event timer, using only the ADC and software
timestamps.

1) ADC Latency—To measure the ADC latency, it is necessary to record the times
immediately preceding the data read operation (i.e., t−1 in Fig. 1) and immediately following
the read (i.e., t0 in Fig. 1). However, t−1 is defined as the beginning of data block N + 1,
corresponding to sample 0 in block N + 1, and therefore does not need an associated
timestamp.

If the ADC system contains one or more digital output channels that can be controlled by
software, then it is possible to use that digital output channel as an event marker that can be
recorded on an input channel. Otherwise, an alternative means of sending an event marker to
the amplifier, and that can be controlled from software, is required. This could be
accomplished with a separate digital to analog convertor (DAC) board (e.g., from National
Instruments), or any other controllable output device. To do so, the digital output (whether
on the amplifier hardware or an external DAC) must be set high (or pulsed) at t0 in Fig. 1,
when the data transfer is complete. This pulse is then recorded back in to the ADC, either as
an analog channel or on a separate digital input channel. Since the first sample of the next
block (N+1) of data stored in the ADC coincides with the start of the data transfer of block N
(i.e., when the last sample has been acquired), the time of the rising edge of the recorded
digital channel in block N + 1 (measured from the start of the block) corresponds to the end
of the data transfer for block N.

The time resolution available with this method is dependent on the sampling rate. For
example, for a sampling rate of 512 Hz, the time resolution is approximately 1.95 ms,
whereas for a sampling rate of 4.8 kHz, it is approximately 0.21 ms. Therefore, a measured
ADC latency of 0 ms does not imply that there was an instantaneous data transfer from the
ADC to the PC, but rather that the transfer latency was less than the resolution of a single
sample at a particular sampling rate.

Wilson et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2) Processing Latency—The processing latency typically constitutes the largest overall
latency, and will scale with the amount of data processed. In order to measure the processing
latency, one could employ a method similar to that for measuring the ADC latency, i.e.,
pulsing a digital channel at appropriate events. However, this method may not be optimal for
two reasons. First, many ADCs have at most one digital output channel; as described, this
digital channel is already being used to measure the ADC latency, and using a single digital
channel for more than one event would complicate the analysis. The second and more
technically problematic reason is that some BCI systems use a modular system specification,
in which the data acquisition module runs in an entirely separate program from the
processing module. In such cases, the processing module does not have access to ADC
functionality to control the digital channels, and therefore cannot use the digital output as an
event timer.

Therefore, our procedure uses software timing functions to record time stamps at the
beginning and end of signal processing. In this case, the processing latencies are much
higher (possibly 10’s of ms) than the ADC latencies, and time resolution on the scale of 1
ms is appropriate to measure the processing latency. Furthermore, since our procedure
measures the timing of many trials, the mean and standard deviation of the processing
latency provide an accurate measure of the processing time.

The specific timing function used will depend on the operating system and the programming
language used for the BCI. For Microsoft Windows-based BCIs using C++, the
QueryPerformanceCounter and QueryPerformanceFrequency functions provide accurate
timing, and were used in the current study. On systems with multiple cores, these functions
can be buggy if called from multiple threads; therefore, all of the timing for a single
application should be handled within a single thread, as is the case with BCI2000.

It is important to note that these values must be saved for offline analysis following the
experiment. The timestamps can either be stored directly in the BCI data file along with the
EEG data and other event markers, or in a separate log file containing only the timestamps.

3) Output Latency—It is impossible to use software timing to measure the output latency,
since a physical change in the output device occurs externally from the software and PC.
That is, there is some delay between issuing a command to change the output, and when a
measurable change in the output device actually occurs, and this delay cannot be known
within the program. Therefore, a stimulus detection system is required to measure outputs
and generate an event signal that can be recorded.

The most common BCI outputs are visual (i.e., video on a computer monitor) and auditory
(i.e., sound output through a speaker or headphones). In order to detect visual changes, a
photodiode can be placed on the monitor to detect display changes related to the experiment;
to detect auditory changes, a microphone or direct output from the sound card can be used.
These sensors interface with a stimulus detection system, which can be adjusted for the
particular intensity levels of each individual stimulus, and should generate a signal when the
stimulus is detected. For example, when the optical level surpasses some user-set threshold,
the detection system might output a digital pulse. This pulse would be recorded as an analog
channel on the ADC, thus providing an accurate event marker for any stimulus with a time
resolution equal to the sampling rate. Any such device with this functionality could be
purchased (e.g., the g.TRIGbox from g.tec, or the StimTracker from Cedrus), or could be
built using a relatively simple circuit.

4) Block Duration and Jitter—Using the methods described above, two possible
methods exist for measuring the block duration and jitter. The first one uses the software

Wilson et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

timestamps recorded at the onset of signal processing (i.e., at t0). The block duration is
simply the time difference between the timestamps for consecutive data blocks, i.e., t4 − t0.
Alternatively, the signal recorded from the digital output to determine the ADC latency can
be used in a similar manner. The rising edge of this signal also corresponds with t0, t4, etc.,
and so the difference in times between consecutive rising edges will equal the block
duration. If the software timer is accurate, then the measured block duration measured using
software timestamps should be the same as the hardware method.

5) System Latency—Finally, the overall system latency is determined as a combination
of the ADC, processing, and output latencies. Therefore, the system latency measurement
will be comprised of a combination of hardware and software event timestamps as described
above.

C. Hardware
This section describes two specific BCI implementations that we used for the tests presented
later in this paper. The first implementation was created using the BCI2000 system; the
second implementation was created using a Matlab-based BCI that implemented a simple
Murhythm cursor movement task. Fig. 2 provides a reference hardware system; the
components of this system will be described in subsequent sections.

1) Test Computers—We evaluated four different computer systems. These included two
desktop computers and two laptops. The specifications for these computers are given in
Table I.

Each computer ran Microsoft Windows XP with Service Pack 3; the MacBook Pro and Mac
Pro each ran Windows natively, and not in a virtual environment such as VMWare or
Parallels. Additionally, all tests were repeated on the Mac Pro with Microsoft Vista
Enterprise Edition to compare performance across operating systems with identical
components. In both operating systems, visual effects (e.g., Aero in Vista) were disabled to
improve performance. Because drivers for the used ADC systems were only available for
Windows, we did not test any other operating system.

2) Monitors—The method of generating the displayed image used by cathode-ray tube
(CRT) screens is very different from that used in liquid-crystal display (LCD) displays.
Therefore, to determine the effect that the monitor type has on display timing, all BCI2000-
based tests were performed on both a CRT and LCD display. The CRT monitor resolution
was set to 800×600 pixels, at a refresh rate of 100 Hz. The LCD resolution was set to
1024×768 pixels at a refresh rate of 60 Hz. The advertised typical response time for the LCD
monitor was 16 ms, signifying the mean amount of time required for the digital image to be
processed by monitor and for the liquid crystals to change states and let light pass through.
CRT monitors have no such delay; instead, CRT monitors update the display by scanning a
beam of electrons over a phosphorous-coated screen; when the beam hits the phosphorus,
the screen fluoresces immediately. The beam scans the screen in rows, starting at the top-left
of the screen, and ending at the bottom-right. Thus, the refresh rate of a CRT refers to the
number of full scans completed in one second. In summary, the output latency for a CRT
monitor will vary by a time that is inversely proportional to the screen’s refresh rate.

3) Detection of Auditory/Visual Stimuli—We used a stimulus detection device, the
g.TRIGbox from g.tec (Guger Technologies, Graz, Austria), to detect visual and auditory
stimuli. To detect visual stimuli, an optical sensor was attached to the presentation monitor
over the area in which the stimuli appeared. To detect auditory stimuli, we connected the
audio output of the PC to the g.TRIGbox. Each input on the g.TRIGbox has a corresponding

Wilson et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

output, so that up to four stimuli can be detected simultaneously, each with an independent
threshold setting. The threshold levels were manually adjusted for each stimulus, such that a
stimulus (i.e., change in video luminescence or audio level) that exceeded the threshold was
detected. When this occurred, the g.TRIGbox output a pulse on the corresponding output
channel, which in turn was recorded by the ADC on an analog EEG channel.

4) ADC—We tested two different ADC systems. The first system consisted of two g.tec
g.USBamp devices. Each device is capable of recording 16 channels and 2 digital channels
at up to 38.4 kHz per channel. The analog inputs can record voltages in a range of ±250mV.
These voltages are amplified with a DC amplifier system and subsequently digitized with
24-bit resolution. The resulting digitized samples are transfered to a PC using a USB 2.0
connection. In our evaluations, we tested sampling rates up to 4.8 kHz (a sampling rate that
is much higher than those typically used in EEG/ECoG recordings). No digital filtering was
performed on the data prior to transmission to the PC.

The second system was the g.tec g.MOBIlab+ amplifier/digitizer. This device can record 8
analog EEG channels and 8 digital channels, sampled at 256 Hz per channel. The digitized
samples are transferred to the PC via a RS232 serial interface or over a Bluetooth wireless
connection. For this study, we used the RS232 serial interface. Initial tests with the
Bluetooth connection revealed increased latency jitter over the serial interface, and an ADC
latency of about 40 ms. According to the manufacturer, this latency is related to digital
output buffering of the Bluetooth transmission, and not an input amplifier/digitizer delay. In
the case of this particular amplifier and transmission protocol, an alternative means of
generating an event pulse would be required.

5) Software—We evaluated the timing of two different BCI software packages. The first
package consisted of the current version of BCI2000 v2.0. (No modifications were done to
the software for our testing purposes. All programs were compiled with the Borland 2007 C
++ compiler with all speed optimizations enabled.) The second package was an inhouse
Matlab program that implemented a Murhythm cursor movement task. These Matlab-based
tests were executed on Matlab 2009a for Windows.

Data collected from these two BCI packages were analyzed using a stand-alone analysis
program that implemented the procedure described in this paper. This program is
parameterized using a a text file that describes how to analyze each test, e.g., which data
channels contain ADC data, visual stimuli, and auditory stimuli. The software uses the
BCI2000 binary data format, which contains the EEG data channels, task-related event
information, and experimental configuration information, such as the sampling rate. In
addition, we wrote a Matlab script that converts Matlab-based data into that data format. By
modifying this script, data collected using any BCI system can be analyzed using our
analysis program, provided that a minimum set of data specifications are met and saved.
This validation and certification toolset is freely available as part of the BCI2000
distribution. Using this toolset, researchers can verify that any BCI system supports the
timing requirements of their particular experiment.

D. Task Configurations
As described, we tested two BCI software packages: BCI2000, and a Matlab-based BCI.
Using BCI2000, we tested several different common BCI tasks with different
configurations. With the Matlab-based BCI, a simple cursor movement task was written and
tested in several different configurations.

It is important to emphasize that the Matlab-based implementation was not primarily
intended to serve as a comparison to the BCI2000-based implementation. Instead, we used

Wilson et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the Matlab-based BCI to demonstrate that the procedure developed in this paper can be
applied to any BCI platform and not just BCI2000; the data from the Matlab BCI is saved in
the Matlab dat format, and is formatted and accessed completely differently than BCI2000
data. Furthermore, because the timing of some aspects of the Matlab-based implementation
were sub-optimal, we demonstrate the potential utility of the techniques in this paper as they
highlighted those aspects of the Matlab-based implementation that had unacceptably long
latencies. It is quite possible that the timing of these aspects could be further improved (e.g.,
[16], [17]), particularly when advanced Matlab techniques using Java, Simulink, or the Real-
Time Toolbox are employed.

1) BCI2000—The BCI2000 suite currently comes with three main feedback paradigms: a
cursor movement task, a P300 speller task, and a generic stimulus presentation task. The
cursor movement task can realize the movement of a cursor towards targets at
programmable locations, similar to the classical “center-out” tasks used in the neuroscience
literature (e.g., [18], [9], [7]). The P300 speller task presents a matrix of characters or icons.
Rows and columns of this matrix are flashed rapidly and randomly to elicit an evoked
response (ERP) when the attended element is flashed, thus allowing the user to “select”
elements from the matrix [19], [20]. Lastly, the stimulus presentation task presents a
programmable series of auditory and/or visual stimuli to the user. This task can be used to
elicit an ERP, such as the P300 response. We used the test procedure described in this paper
to comprehensively test the protocols described above. We did this by systematically
changing their most critical variables and determining the timing behavior of the resulting
BCI system configuration; the test variables are described in Table II.

We evaluated latencies for each of the sampling rates and numbers of channels given in
Table II, and for each of five BCI2000 configurations. This resulted in a total of 100
different tests. Specifically, for the cursor task, we compared two configurations (two- and
three-dimensional video output) that rendered the display differently. For the stimulus
presentation task, we evaluated stimuli that gave video output, audio output, and combined
video and audio output. Finally, for the spelling task, we used two configurations: one
configuration displayed a 7×7 array of characters, and the other displayed a single character.
The five configurations described above will henceforth be referred to as: Cursor Task (3D),
Cursor Task (2D), P3 Speller (7×7), P3 Speller (1×1), and Stimulus Presentation (which
included both auditory and visual stimuli). Thus, we evaluated a total of 100 BCI2000-based
tests (i.e., five configurations, with four different sampling rates, and five different numbers
of channels) for each computer. For any of these tests, if the average block duration was
greater than the sample block size for two or more seconds (i.e., the computer could not
keep up processing the sampled data in any two seconds period), the test stopped
automatically and the next test began.

As shown in Fig. 3, the specific stimulus depended on the BCI2000 feedback paradigm (i.e.,
Cursor Task, P3 Speller Task, and Stimulus Presentation Task). They were similar in that
the stimulus always appeared in the same location. For the Cursor Task, a large white target
appeared in the center of the screen, and then disappeared, leaving a black background. For
the P3 Speller task, a white letter or icon in the center of the screen was flashed on a black
background. Similarly, for the Stimulus Presentation task, a white icon appeared in the
center of the black screen. In the case that audio output was enabled, a short sound was
played simultaneously with the icon. The peak amplitude of this sound stimulus occurred at
50 ms, but the input threshold was set to 0, so that any detectable sound stimulus would
trigger an event. The noise floor of the stimulus detector was below threshold, and therefore
no false-positive events occurred. For all tasks, the stimulus was presented for 100 ms, with
a pause interval of 100 ms, and a total of 50 times. The test suite was designed so that once

Wilson et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the visual and auditory detectors were setup correctly, no interaction with the experimenter
was required.

Data from the acquisition system were processed as described below. First, the signals of
each channel were referenced to a common-average reference (CAR). This is a commonly-
used spatial filter for EEG experiments, in which the mean value of every channel is
subtracted from each channel of interest. This procedure is implemented using matrix
multiplication:

(6)

where A is the input signal with dimensions of N × S (N equals the number of channels, S
equals the number of samples), B is the spatial filter and is represented as a N ×N matrix,
and the output signal C with dimensions equal to the input signal. The computational
complexity of the implemented matrix-matrix multiplication is O(N3), indicating that the
computational cost of this procedure is proportional to the number of elements (e.g., input
channel or sample) to the third power.

These spatially filtered signals were then further processed depending on the specific task.
The parameters for these procedures were chosen as representative of commonly used
values during a typical experiment. For the cursor task, a power-spectral estimate using an
autoregressive model of the input data was calculated for each channel. This was done using
the autoregressive spectral estimation built into BCI2000 [21], [22], and a model order of 30
and window size of 500 ms. For the P300 spelling and stimulus presentation tasks, the
system collected a 500 ms epoch of data after each stimulus presentation. Then, the system
calculated the average of all collected epochs, separately for each stimulus and each channel.
In a typical BCI experiment, the average is only calculated after a certain number of epochs
are collected for each stimulus, e.g., 15 epochs. In our tests, the average was updated after
every stimulus to determine an upper bound for the processing load.

2) Matlab-based BCI—The Matlab-based BCI implemented a version of the BCI2000
Cursor Task (2D) using Matlab processing and visualization functions, and used the Matlab
equivalents of the algorithms employed in BCI2000. We used the * operator to implement a
spatial filter (i.e., for matrix-matrix multiplication), and the pburg function to calculate the
power spectral estimate using the Burg algorithm. Additionally, we created a Matlab
software interface for the g.USBamp device, so that data could be acquired from the ADC
directly into Matlab. The Cursor Task was chosen for the Matlab BCI because it uses the
most computationally intensive signal processing algorithm. Finally, visual stimuli were
presented using the Matlab figure and rectangle functions, with OpenGL rendering enabled.
The Matlab figure and rectangle objects were created once, and the rectangle was displayed
and hidden using the Matlab commands set(r, ‘visible’,‘on’) and set(r, ‘visible’,‘off’),
respectively, where r was the handle of the rectangle object.

E. Analysis Methods
We implemented a validation and certification program to analyze and interpret the tests.
The rising edges on three channels were detected to determine the time points for the events
shown in Fig. 4. The associated software time-stamp values stored in the data file (i.e., the
sample block onset and stimulus time) were used to determine the ADC latency, video and
audio latencies, and system latencies. For example, if the optical detection pulse was on
channel 2 (e.g., Video (2) in Fig. 4), then the rising edges on that channel were compared to
the starting time of the corresponding data block, and the difference between the two values
was the video system latency for that block.

Wilson et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

III. Results
This section presents example data for the tested BCI configurations using both BCI2000
and a Matlab-based BCI, which demonstrate the type of results that can be obtained using
the procedure shown in this paper; the results are not meant to be demonstrative of results
that can be obtained only with BCI2000, or any other specific BCI implementation.
Furthermore, all of the results shown are dependent on the specific hardware and BCI
systems used, and are included to demonstrate that the procedure accomplishes what this
paper claims. In fact, it is precisely because all BCI systems are different (and will therefore
produce different results) that this procedure is even necessary.

The main results of the evaluations in this paper are shown in Fig. 5, which shows the
latencies for the Mac Pro system running Windows XP with BCI2000. The results are
shown for 60 tests, which include the three core BCI2000 tasks, repeated with all
combinations of sampling rates and number of channels acquired. In order to condense the
figure, the results for two of the tasks, Cursor (2D) and P3 Speller (1×1), are not shown in
Fig. 5, since they are similar to the Cursor (3D) and P3 Speller (7×7) results, respectively
(detailed descriptions for all tasks are provided below). The paragraphs below describe these
results, compare these results obtained with the Matlab-based BCI, and summarize the
results for the other systems. For certain sets of configurations, we also tested the hypothesis
that particular sets of latencies have the same mean and variance (resulting in a p-value for
each comparison).

A. ADC Latency
1) g.USBamp—The latencies obtained from 60 tests for the g.USBamp ADC are shown
graphically in Fig. 5 and in tabular form in Table III. An analysis of variance (ANOVA)
determined that the type of the task had no effect on ADC latency (p = 0.9). However, the
sampling rate and number of channels each had significant effects on ADC latency (p <
0.01). This is expected since a higher sampling rate and/or channel count corresponds to
more data that needs to be acquired by the ADC and transmitted to the PC.

The ADC latencies were not affected by whether BCI2000 or Matlab were used. The Matlab
version of the data acquisition program was implemented in C++, and used the Matlab MEX
interface. Thus, it was not affected by any overhead that might be introduced by Matlab.

Because the ADC latency was measured by analyzing the digitized signals, the resolution of
the reported values was dependent on the sampling rate. Specifically, sampling rates of 512,
1200, 2400, and 4800 Hz correspond to a timing resolution of 1.95 ms, 0.83 ms, 0.42 ms,
and 0.21 ms, respectively. Therefore, a value of 0 ms corresponds to a latency that is smaller
than a single sample at the given rate.

2) g.MOBIlab+—The g.MOBIlab+ ADC was tested using 16 channels (8 analog and 8
digital) sampled at 256 Hz with the same five BCI configurations used for the g.USBamp.
The mean latency for this ADC was 3.91 ms, equivalent to one sample at 256 Hz, and was
the same for all five tasks. According to the manufacturer, this delay by one sample is due to
internal buffers on the ADC.

B. Signal Processing Latency
1) BCI2000—As expected, the processing latency was significantly influenced by the
sampling rate, number of channels, and task (p < 0.001). However, there were important
similarities between configurations. The cursor (3D) and cursor (2D) processing latencies
were nearly identical for all channel and sampling rate configurations, differing by no more

Wilson et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

than 0.5 ms, which is less than the resolution of the event timer (1 ms). Comparing the two
P3 speller configurations, all processing latencies were significantly different (p < 0.001);
the 7×7 configuration updated 49 averages with every stimulus presentation, compared to
just one update for the 1×1 configuration, which had lower processing latencies in every
configuration. Similarly, the stimulus presentation task only computed a single average for
every stimulus, and had processing latencies that were similar to those for the P3 speller
(1×1) configuration.

The two cursor task configurations used the most computationally-intensive signal
processing procedures. These procedures involved calculating the power spectrum of every
channel for every sample block, and had a peak processing latency of 49.63 ms for both
cursor tasks. The processing latencies for the Cursor Task (3D) are shown in Table IV. The
P3 speller task and the stimulus presentation tasks calculated the time-average of 500 ms
blocks of data for every stimulus, requiring considerably less computational power, and had
a maximum processing latency of 24 ms.

We also calculated the correlation coefficients (r) between the total number of processed
elements (i.e., the number of channels times the number of samples in a block) and the
corresponding signal processing latency. The correlation for all tasks was r > 0.97 (p <
0.001), indicating that the processing latency was substantially influenced by the number of
processed data elements, as expected.

2) Matlab-based BCI—The processing latency in the Matlab-based BCI was also
significantly influenced by the sampling rate and channel count (p < 0.001). In all cases, the
processing time was longer in Matlab than in BCI2000, except for 4 channels at 4800 Hz
(7.29 ms in Matlab vs. 8.42 ms in BCI2000). At lower sampling rates (e.g., 512 and 1200
Hz), the processing latencies were much larger in Matlab than BCI2000 (e.g., with 16
channels at 512 Hz, in Matlab the latency was 22.39 ms, while in BCI2000 it was 8.02 ms);
however, as the amount of data increased, the processing latencies for Matlab and BCI2000
were closer. This suggests an additional software overhead in Matlab that is present
regardless of the amount of data to be processed and unrelated to the actual algorithm used.
As the amount of processed data increases, the algorithmic latency dominates the timing of
this overhead, while with smaller amounts of data, the Matlab overhead dominates the
latency.

C. Video Output Latency
1) BCI2000—In contrast to the signal processing latency, the video output latency did not
depend on the number of channels, sampling rate, or task (p = 0.67). The mean video output
latency on the MacPro Windows XP system using a CRT monitor with a refresh rate of 100
Hz was 5.06±3.13 ms. The minimum and maximum output latencies were 1.33 ms and
11.33 ms, respectively. Because the current implementations of the BCI2000 feedback
protocols are not synchronized to the refresh rate of the monitor, the video output latency
values can range from 0 ms (i.e., when the output command is issued precisely at the
monitor refresh) to the inverse of the refresh rate, Δt (i.e., when the output command is
issued immediately following a refresh), which is 10 ms at a 100 Hz refresh rate. Our
experimental results correspond closely to this: 1/(11.33 ms−1.33 ms) = 100 Hz. The
minimum output latency (1.33 ms) should then correspond to the latency of the system
(operating system and video card) to process a graphics command and send it to the monitor.

As described, all tests were replicated using an LCD monitor (Fig. 6). In this case, the mean
video output latency was 15.22 ± 5.31 ms, with a range of 7.29 to 27.16 ms. The maximum
possible refresh rate for this monitor was 60 Hz. The mean value is larger for the LCD
monitor due to the “on” time for liquid crystals, which is the amount of time required for the

Wilson et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

crystals to reconfigure and let light pass through when a current is applied [3]. This issue is
addressed in more detail in the Discussion section.

2) Matlab-based BCI—The Matlab video output latency was very erratic compared to
that obtained in BCI2000 using the same PC, algorithm, and (CRT) monitor. The mean
latency was 45.80 ± 32.66 ms, with a range of 7.56 to 141.05 ms. This indicates that there is
a large software overhead required to update the display, and that the exact time that the
display is updated is very inconsistent from sample block to sample block. This suggests that
the timing of stimulus presentation using Matlab may be inadequate for many BCI
applications.

D. Audio Output Latency
The Stimulus Presentation task in BCI2000, described in Sec. II-D, was used to measure the
audio output latency. Initially, we ran the Stimulus Presentation task in three different
configurations, in which the video latency and audio latency were measured both separately,
and then together. However, we found that there was not a significant difference for the
latencies if they are measured in the same task compared to if they are run separately. That
is, the inclusion of auditory stimuli did not affect the video output latency, and vice versa.

The audio latency differed widely between computers and operating systems in the task that
tested the audio output latency. The mean audio latency on the Mac Pro system running
Windows XP was 40.45±2.35 ms, and did not change based on the sampling rate or number
of channels (p = 0.67). On the same computer running Windows Vista, however, the latency
was 62.6±4.59 ms, nearly 50% larger than the audio latency in Windows XP.

E. Block Duration & Jitter
1) BCI2000—The block durations were measured using both the software timestamps and
hardware timing, as discussed in the methods. The block durations calculated using these
two methods were compared to determine the accuracy of the software timestamp method
versus hardware timing using pulses. We found that the two methods produced the same
results for sampling rates of 1200, 2400, and 4800 Hz. When a sampling rate of 512 Hz was
used, the software timestamps were unable to accurately measure the block duration,
because the block duration was not an integer (i.e., the block duration was 101.56 ms at 512
Hz, compared to exactly 100 ms for the other sample rates). Since the software timestamp
had a resolution of 1 ms, the block duration was measured as 102 ms and 101 ms on
alternating blocks, and the mean block duration was measured as 101.56 ± 0.5 ms.
Therefore, the hardware timing method was used for calculating the block duration.

The theoretical block duration for all tests was 100 ms, except for those with a sampling rate
of 512 Hz, which had a block duration of 101.56 ms. The block duration was calculated
from the rising edge of the digital input channel on consecutive sample blocks. This implies
that the variance in the calculated block duration is dependent on the variance of the ADC
latency. However, the block duration was not significantly dependent on the sample rate or
number of channels (p = 0.99).

For tasks configured with sampling rates of 1200, 2400, and 4800 Hz, 94.6% of the
measured block durations were exactly 100 ms; the standard deviation of the block durations
(i.e., the jitter) was 0.46 ms, with a range of 99.58 ms to 100.42 ms. 100% of the block
durations for 512 Hz were 101.5625 ms (a block size of 52 samples at 512 Hz), resulting in
0 ms jitter. In other words, the jitter value was smaller than the temporal resolution given by
the sampling rate.

Wilson et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2) Matlab-based BCI—The mean block duration was equal to the theoretical block
duration for all sample rates and channel counts tested (i.e., 100 ms for sample rates of 1200,
2400, and 4800 Hz, and 101.5625 ms for 512 Hz). However, there was more jitter in the
block duration in Matlab than in BCI2000, i.e., the standard deviations of the block
durations were larger. The jitter did not vary in a predictable manner with the number of
channels or sampling rate, as shown in Table VI.

F. Operating System
In addition to the tests described above, all tests were replicated on the same Mac Pro
system that dual-booted into Windows Vista Enterprise instead of Windows XP to
determine the effect that the operating system has on the tasks using otherwise identical
hardware. There were no significant measurable differences in the ADC latency or signal
processing latency between Windows XP and Windows Vista for any task, sampling rate, or
number of channels (p > 0.5).

However, the video and audio output latencies for Windows Vista were significantly larger
than those for Windows XP (each had p < 0.001). The mean video output latency was 20.26
± 7.56 ms, with a range from 6.12 ms to 42.39 ms, compared to 5.72±1.62 ms with a range
of 1.33 ms to 11.33 ms in Windows XP. Fig. 7 shows the distributions of video output
latencies for Windows XP and Windows Vista on the Mac Pro. The mean audio output
latency in Windows Vista was 62.64 ± 7.55 ms, ranging from 52.58 ms to 112.91 ms,
compared to a mean latency in Windows XP of 40.45 ± 2.32 ms. This suggests that the
timing of stimulus presentation using Vista, at least with this particular hardware and driver
configuration, may be inadequate for many BCI applications.

G. Other Systems
Results from other systems are briefly summarized here.

1) Dell Optiplex (Windows XP)—The Dell Optiplex workstation had slightly better
performance compared to the Mac Pro in every aspect. The most striking difference,
however, was the audio output latency, which was significantly smaller (16.58 ± 1.62 ms)
than for the Mac Pro (40.45 ± 2.35 ms). Additionally, the processing latencies were smaller
on the Dell than on the Mac Pro for all tasks. This difference may be due to the Dell’s higher
clock speed (3.0 GHz for the Dell compared to 2.8 GHz for the Mac Pro; all processing
algorithms were single-threaded and thus did not take advantage of the multiple cores in the
Mac Pro).

2) Macbook Pro (Windows Vista)—The processing latencies were longer for all tasks
on this computer than for the Mac Pro running Windows XP or Vista, and than for the Dell
Optiplex. This is likely due to the slower CPU clock speed (2.2 GHz) compared to the other
two systems (2.8 GHz and 3.0 GHz). The video output latency (19.72 ms) was nearly
identical to the value obtained under Windows Vista on the Mac Pro (19.97 ms), indicating
further that the operating system has a significant effect on the output latencies. Similarly,
the audio output latency was 63.85 ms on this system, compared to 62.64 ms on the Mac
Pro.

3) Dell Latitude (Windows XP)—This system was the only one tested that was unable to
maintain online performance in some tasks. Specifically, both of the cursor tasks performed
poorly for higher sampling rates, particularly for the 3D cursor setting, which had
significantly longer processing latencies than for the 2D cursor task. These longer
processing latencies are presumably due to the integrated Intel graphics card, which cannot
handle 3D graphics; the processing latency includes some OpenGL pre-processing video

Wilson et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

commands, which are processed on the graphics card on the other systems, but are processed
on the CPU on systems without hardware acceleration, such as this laptop.

The older and slower CPU clock speed also contributed to longer processing latencies for all
tasks. However, it is also important to note that even this older laptop was able to process 32
channels sampled at 4800 Hz for the P300 and Stimulus Presentation tasks, and up to 32
channels sampled at 512 Hz in the 2D Cursor task. In most circumstances, a laptop such as
this would likely be used as a portable EEG system, and would not require a sampling rate
higher than 512 Hz. Additionally, usually only a subset of all channels are typically
processed for a given task (e.g., C3, C4, and Cz for the Cursor task), indicating that the
computational requirements for many applications are not beyond those of many laptop
systems.

IV. Discussion and Conclusion
This study presented a procedure to measure system latencies for any general hardware and
software BCI configuration. We used this system to characterize the timing behavior of
different BCI2000 and Matlab-based BCI implementations. The results demonstrate that it is
possible to accurately determine the latency at each step of the BCI system without the use
of an external unit event timer or other hardware, besides a stimulus detector (a common, if
not necessary, piece of equipment in many BCI and psychophysical labs). This procedure is
general so that it can be applied to different BCI systems, and that it can be modified or
expanded for additional output events, e.g., the movement of a robotic arm. This procedure
provides 1) the capability to determine if a computer is able of running a particular BCI
configuration, 2) information about the performance capabilities for a given configuration
(e.g., the minimum block duration at a particular sample rate and channel count), and 3) a
method to test and optimize new modules (e.g., a new signal processing algorithm that is
computationally intensive).

The first point is particularly important for experiments that include both audio and visual
stimuli. For example, the Windows XP Mac Pro system had a mean video latency of 5.06
ms and a mean audio latency of 40.45 ms, a potentially large difference for psychophysical
studies. Therefore, a better choice of computer in this case may be the Dell Optiplex
computer, with video and audio latencies of 6.72 ms and 16.58 ms, respectively. Therefore,
the choice of a computer system and components for use in a BCI experiment can have a
significant impact on the results of the study, and there may be trade-offs in the selected
system.

Another important consideration in any psychophysical study including BCI research is the
use of LCD monitors. LCD monitors operate with a fundamentally different technology
compared to CRT monitors, and have become the standard display type shipped with new
computers. They are more convenient in terms of size and weight, particularly if the
researcher is required to travel to the location of the subject instead of keeping the display in
a fixed location in the laboratory. However, the increased overall latency and variability in
output timing from LCD monitors may compromise the results. For example, a recent study
showed that the onset of the P100 response in EEG is significantly delayed when different
LCD monitors are used compared to a CRT monitor [1]. In summary, LCD monitors employ
a more technically complex process to realize the video output. This latencies for this
process are governed by a number of factors that include conversion of the digital signal to
pixel-by-pixel values, setting the luminance of each pixel to a certain value (the response
times for which can vary depending on the colors, e.g., the grey to grey response time can be
very different from the black to white response time), the refresh rate, plus any additional
image processing done on the monitor itself. An additional consideration is “overdrive”

Wilson et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

technology that is used in some LCDs, which can actually introduce an input lag of up to 60
ms, or inverse ghosting, in which a shadow appears behind a quickly moving object, each of
which could contribute to experimental problems.

The choice of operating system is clearly important as well. As shown in Fig. 7, video
latency jitter and therefore system latency jitter was much higher for Windows Vista than
for Windows XP on identical hardware and BCI software configurations. It is possible that
the video card drivers were optimized for Windows XP but not for Windows Vista, or that
Windows Vista generally has inferior timing characteristics. Whatever the reason, the fact
that the operating system itself can have a significant effect on BCI timing further
demonstrates the need for the tools developed in the present study.

The results also show that the choice of BCI system implementation can have a significant
impact on the quality of the experiment and data recorded. In this study, the BCI2000 cursor
movement task was replicated in the most recent version of Matlab (2009a), including signal
acquisition, signal processing, and application display. To most observers, both versions of
the experiment would likely appear to run identically. However, the results obtained in this
study show that the Matlab BCI implementation had very inconsistent timing, particularly
for updating the display. Such timing inconsistencies are likely to degrade the quality of the
recordings and experiment.

As BCI experiments continue to push technical limits by moving toward experiments with
higher sampling rates, channel counts, and experimental complexity, such as experiments
using electrocorticographic (ECoG) electrodes and microelectrodes, it remains important to
be confident that a particular experimental protocol can be executed properly on a chosen
system. As evidenced by the results shown in this paper, even a relatively high-end
computer, the 8-core Mac Pro, may be unable to maintain online performance with just 32
channels at a sampling rate of 4.8 kHz. (It is important to remember here that the signal
processing demands of this configuration were relatively high. Simple data acquisition and
stimulus presentation, or processing with less demanding configurations, proved possible at
these data rates on this computer.)

The methods developed in this study provide a means of identifying and addressing system
bottlenecks, allowing the researcher to decide whether the capabilities of a system are
sufficient for a given experiment, if the system needs to be upgraded, or if algorithms need
to be further optimized.

Acknowledgments
The authors would like to acknowledge the support of the NIH (Clinical Neuroengineering Training Program, 1-
T90-DK070079-01 (JW); Institutional Clinical and Translational Science Award, 1KL2RR025012-01 (JW)
(NCRR); R01-EB006356 (GS) (NIBIB); and EB00856 (JRW and GS) (NIBIB)) and the US Army Research Office
(W911NF-07-1-0415 (GS) and W911NF-08-1-0216 (GS)).

References
1. Husain, AM.; Hayes, S.; Young, M.; Shah, D. Visual evoked potentials with CRT and LCD

monitors: when newer is not better; Neurology. Jan. 2009 p. 162-4.[Online]. Available:
http://www.neurology.org/cgi/content/full/72/2/162

2. Krantz, JH. Tell me, what did you see? The stimulus on computers; Behavior research methods,
instruments, & computers. May. 2000 p. 221-9.[Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/10875166?dopt=abstract

3. Stewart, N. Millisecond accuracy video display using OpenGL under Linux; Behavior research
methods. Feb. 2006 p. 142-5.[Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16817523?dopt=abstract

Wilson et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.neurology.org/cgi/content/full/72/2/162
http://www.ncbi.nlm.nih.gov/pubmed/10875166?dopt=abstract
http://www.ncbi.nlm.nih.gov/pubmed/16817523?dopt=abstract

4. Chambers CD, Brown M. Timing accuracy under Microsoft Windows revealed through external
chronometry. Behavior research methods, instruments, & computers: a journal of the Psychonomic
Society, Inc. Feb; 2003 35(1):96–108.

5. MacInnes WJ, Taylor TL. Millisecond timing on PCs and Macs. Behavior research methods,
instruments, & computers. May; 2001 33(2):174–8.

6. Myors, B. Timing accuracy of PC programs running under DOS and Windows; Behavior research
methods, instruments, & computers. May. 1999 p. 322-8.[Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/10495817?dopt=abstract

7. Wolpaw, JR.; Birbaumer, N.; McFarland, DJ.; Pfurtscheller, G.; Vaughan, TM. Brain-computer
interfaces for communication and control; Clinical neurophysiology. Jun. 2002 p. 767-91.[Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S1388245702000573

8. Wolpaw, JR.; McFarland, DJ. Control of a two-dimensional movement signal by a noninvasive
brain-computer interface in humans; Proc Natl Acad Sci USA. Dec. 2004 p. 17p. 849-54.[Online].
Available: http://www.pnas.org/content/101/51/17849

9. Schalk, G.; Miller, KJ.; Anderson, NR.; Wilson, JA.; Smyth, MD.; Ojemann, JG.; Moran, DW.;
Wolpaw, JR.; Leuthardt, EC. Two-dimensional movement control using electrocorticographic
signals in humans; J Neural Eng. 2008. p. 75-84.[Online]. Available:
http://www.iop.org/EJ/abstract/1741-2552/5/1/008/

10. Wilson, JA.; Felton, EA.; Garell, PC.; Schalk, G.; Williams, JC. ECoG factors underlying
multimodal control of a brain-computer interface; IEEE transactions on neural systems and
rehabilitation engineering. Jun. 2006 p. 246-50.[Online]. Available:
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1642780

11. Taylor, DM.; Tillery, SIH.; Schwartz, AB. Direct cortical control of 3D neuroprosthetic devices;
Science. Jun. 2002 p. 1829-32.[Online]. Available:
http://www.sciencemag.org/cgi/content/full/296/5574/1829

12. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose
brain-computer interface (BCI) system. IEEE transactions on bio-medical engineering. Jun; 2004
51(6):1034–43. [PubMed: 15188875]

13. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kubler A. An MEG-based
brain-computer interface (BCI). Neuroimage. Jul; 2007 36(3):581–593. [PubMed: 17475511]

14. Bayliss JD. Use of the evoked potential P3 component for control in a virtual apartment. IEEE
Trans Neural Syst Rehabil Eng. Jun; 2003 11(2):113–116. [PubMed: 12899249]

15. Edlinger G, Guger C. Laboratory PC and Mobile Pocket PC brain-computer interface architectures.
Conf Proc IEEE Eng Med Biol Soc. 2005; 5:5347–5350. [PubMed: 17281459]

16. ”uller-Putz GM, Scherer R, Brauneis C, Pfurtscheller G. SSVEP-based BCI. Journal of neural
engineering. 2005; 2:123–130. [PubMed: 16317236]

17. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G. How
many people are able to control a P300-based brain–computer interface (BCI)? Neuroscience
Letters. 2009; 462(1):94–98. [PubMed: 19545601]

18. Schwartz AB, Kettner RE, Georgopoulos AP. Primate motor cortex and free arm movements to
visual targets in three-dimensional space. i. relations between single cell discharge and direction of
movement. J Neurosci. Aug; 1988 8(8):2913–2927. [PubMed: 3411361]

19. Donchin, E.; Spencer, KM.; Wijesinghe, R. The mental prosthesis: assessing the speed of a P300-
based brain-computer interface; IEEE Transactions on Rehabilitation Engineering. Jun. 2000 p.
174-9.[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10896179?dopt=abstract

20. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients.
Clinical Neurophysiolog. Mar; 2006 117(3):538–48.

21. McFarland, DJ.; Wolpaw, JR. Sensorimotor rhythm-based brain-computer interface (BCI): model
order selection for autoregressive spectral analysis; J Neural Eng. Jun. 2008 p. 155-62.[Online].
Available: http://www.iop.org/EJ/abstract/1741-2552/5/2/006/

22. Krusienski D, McFarland D, Wolpaw J. An evaluation of autoregressive spectral estimation model
order for brain-computer interface applications. 30 2006-Sept. 3 2006:1323–1326.

Wilson et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/10495817?dopt=abstract
http://linkinghub.elsevier.com/retrieve/pii/S1388245702000573
http://www.pnas.org/content/101/51/17849
http://www.iop.org/EJ/abstract/1741-2552/5/1/008/
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1642780
http://www.sciencemag.org/cgi/content/full/296/5574/1829
http://www.ncbi.nlm.nih.gov/pubmed/10896179?dopt=abstract
http://www.iop.org/EJ/abstract/1741-2552/5/2/006/

Fig. 1.
System timing diagram showing the timeline of events in a typical BCI experiment. t0 is
chosen as the time at which the neural data is available to the BCI for processing, and marks
the onset of a block of data.

Wilson et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Components of the validation system. A) Computer running the BCI; B) Stimulus detection
trigger box; C) ADC, with digital output (Do) and digital input (Di) ports; D) Monitor and
optical detector; E) Audio output from computer; F,G) outputs from trigger box to amp; H)
Amp digital output to analog channel input; (I) Amp digital output to digital input.

Wilson et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Depiction of experimental flow. The red circle shows the location of the optical detector.
For each test, a stimulus is presented at the same location repeatedly; the detector is input to
the g.TRIGbox. When the light intensity at the location on the monitor (or audio volume for
the audio-based tests) exceeded a threshold during the task, the trigger box output a TTL
pulse that was recorded by the data acquisition device.

Wilson et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Illustration of recorded events. Amp (1) records the digital output set after a block of data is
acquired; at the same time, a software time-stamp is stored (t0). At t2, the stimulus command
is issued, and software timestamp is stored. Video (2) and Audio (3) record the video and
audio stimuli, respectively.

Wilson et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
System latency components for the three core BCI2000 tasks run on the Mac Pro computer
running Windows XP. The stacked bars represent the contribution of each latency to the
system latency, which is the height of each bar. Each group of three bars contains results for
4, 16, and 32 channels; each of these groups are organized by the sample rate (512, 1200,
2400 and 4800 Hz). The Stimulus Presentation Task also contains audio latency values; in
this case, the video latency and audio latency are adjacent. The right panel shows the values
from 0 to 2 ms for the P3 Speller (7×7) task to demonstrate the relative time scale of the
ADC latency.

Wilson et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
Comparison of BCI2000 video output latencies for CRT and LCD monitors, for all tests.

Wilson et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
Comparison of video output latencies for Windows XP and Windows Vista.

Wilson et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 25

TABLE I

List of computers tested.

Computer CPU Speed RAM Video Card

Mac Pro Dual 2.8 GHz Quad-Core Intel Xeon 6GB NVIDIA 8800GT (512MB)

Macbook Pro 2.2 GHz Intel Core2 Duo 4GB NVIDIA 8600M (128MB)

Dell Optiplex 755 3 GHz Intel Core2 Duo 4GB ATI Radeon 2600XT (256MB)

Dell Latitude 610 1.86 GHz Intel Pentium M 512MB Integrated Intel 915M (16MB)

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 26

TABLE II

Task parameters, their tested values, and descriptions

Sampling Rate (Hz) # Channels Acquired & Processed # Samples in one Block

Values 512, 1200, 2400, 4800 4, 8, 16, 24, 32 52, 120, 240, 480

BCI2000 Param. Names SamplingRate SourceCh SampleBlockSize

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 27

TABLE III

Mean g.USBamp ADC latencies in ms for combinations of sampling rates and channels.

Chs

Sampling Rate (Hz)

512 1200 2400 4800

4 0.00 0.00 0.00 0.42

8 0.00 0.00 0.42 0.42

16 0.00 0.00 0.42 0.42

24 0.00 0.00 0.42 0.62

32 0.00 0.00 0.42 0.83

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 28

TABLE IV

BCI2000 Cursor Task (3D) processing latencies in ms for combinations of sample rates and channels.

Chs

Sampling Rate (Hz)

512 1200 2400 4800

4 3.39 ± 1.59 4.25 ± 1.69 5.72 ± 1.86 8.42 ± 1.84

8 4.92 ± 1.60 6.46 ± 1.69 9.08 ± 1.92 14.28 ± 1.79

16 8.02 ± 1.52 11.08 ± 1.71 16.13 ± 1.78 25.60 ± 1.72

24 11.18 ± 1.52 15.29 ± 1.42 23.07 ± 1.93 37.60 ± 1.89

32 14.37 ± 1.56 20.43 ± 1.73 30.15 ± 1.79 49.63 ± 1.70

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 29

TABLE V

Mean Matlab Cursor Task processing latencies in ms for combinations of sample rates and channels.

Chs

Sampling Rate (Hz)

512 1200 2400 4800

4 4.90 ± 0.30 6.47 ± 5.33 7.12 ± 5.53 7.29 ± 3.96

8 9.69 ± 0.46 11.61 ± 4.97 12.99 ± 5.74 15.03 ± 6.04

16 22.39 ± 7.64 23.90 ± 7.50 25.92 ± 8.06 28.76 ± 7.49

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wilson et al. Page 30

TABLE VI

Matlab block duration jitter.

Chs

Sampling Rate (Hz)

512 1200 2400 4800

4 0.49 3.48 5.88 0.21

8 0.49 2.41 1.95 6.49

16 6.41 5.91 11.80 5.28

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 25.

